
Coordinated Dynamic Bidding in Repeated Second-Price Auctions with Budgets

Yurong Chen^{*,1}, Qian Wang^{*,1}, Zhijian Duan¹, Haoran Sun¹, Zhaohua Chen¹, Xiang Yan², Xiaotie Deng¹ *Equal Contribution. ¹Peking University ²Huawei TCS Lab

Introduction

Online repeated **second-price** auctions. Advertisers delegate bidding tasks to the bidding agency

Main Results: Propose Online Coordinated Bidding Algorithms

- 1. Theoretically and Experimentally guarantee every bidder gains **better** than they independently bid
 - Under assumptions of strong monotonicity.
- 2. Game-Theoretic Property Analysis in symmetric cases:
 - \succ Coalition welfare maximization;
 - \succ incentive to misreport budgets.

Settings

At round $t = 1, \dots, T$:

- Bidder *k* in coalition \mathcal{K} : budget $B_k = \rho_k T$, value $v_{k,t}$;
- Highest bid outside coalition: d_r^0 .

 $v_{k,t}$ s and d_t^O : each follows stationary distributions, i.i.d. across rounds.

Feasible: not exceed the budgets in all cases.

Difficulties

- Interplay of bidders in dynamic
 - \succ multi-player online games: influenced by others' bids.
- Multi-benchmark comparison: Everyone is better off using co
- Allow monetary transfer among So that maximizing coalition we

Not Reasonable. 🔀

Bidders participate in auctions to their ads, rather than simply cond investments.

Benchmark

Individual Adaptive Pacing (IP the coalition uses adaptive pacing [independently:

At round *t*: bidder *k* bids $b_{k,t} =$

Update:
$$\lambda_{k,t+1} = P_{[0,\overline{\lambda}]} \left(\lambda_{k,t} - \mathcal{V}_{[0,\overline{\lambda}]} \right)$$

- > Optimal individual bidding strat adversary environments.
- > Expected expenditure per round is strongly monotone: converging to some **equilibria**.

Technique 1 – Algorithm Design

1. A form of optimal strategies: select one representative to bid in each round.

- ✤ A fair rule to select representatives in each round Important!
- Budget management strategies

Coordinated Pacing (CP): Guarantee, Coalition
Maximization, Budget-IC in Symmetric Cases
Maximization, Budget-IC in Symmetric Cases
Natural extension of adaptive pacing

$$k^* \in \arg\max_{k\in\mathcal{K}} \min\left\{\frac{v_{k,t}}{1+\lambda_{k,t}}, \overline{B}_{k,t}\right\}$$

Bidder k :
Bid $b_{k,t} = \min\left\{\frac{1(k+k^*)v_{k,t}}{1+\lambda_{k,t}}, \overline{B}_{k,t}\right\}$
Update:
Pacing Parameter: $\lambda_{k,t+1} = P_{[0,\overline{\lambda}]}\left(\lambda_{k,t} - \epsilon(\rho_k - z_{k,t})\right)$
Remaining Budgets: $\overline{B}_{k,t+1} = \overline{B}_{k,t} - z_{k,t}$
P: When everyone inside
Balseiro et al'19]
 $v_{k,t}/\lambda_{k,t}$
 $(\rho_k - z_{k,t}))$
regies in stationary and
Coordinated Pacing (CP): Guarantee in General.
Coalition Maximization in Symmetric Cases
Number of the representative
Pseudo parameter $\lambda_{k,t}$ for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the
coalition
Bidder k :
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the}{v_{k,t}}, for bidding inside the$
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the}{v_{k,t}}, for bidding inside the}{v_{k,t}}, for bidding inside the$
 $k = min\left\{\frac{v_{k,t}}{v_{k,t}}, for bidding inside the}{v_{k,t}}, for bidding inside the}$$$$$$$

 $b_{k,t}^{i} = \min\left\{\frac{1}{1+\lambda_{k,t}}, B_{k,t}\right\}$ $k^* \in \arg \max_{k \in \mathcal{K}} b_{k,t}^{I}$

Pacing parameter $\mu_{k,t}$ for bidding in the real auction

5 id
$$b_{k,t}^{O} = \min\left\{\frac{1\{k=k^*\}v_{k,t}}{1+\mu_{k,t}}, \overline{B}_{k,t}\right\}$$

Update:

Pseudo Parameter: $\lambda_{k,t+1} = P_{[0,\overline{\lambda}]} \left(\lambda_{k,t} - \epsilon \left(\rho_k - z'_{k,t} \right) \right)$

Pseudo Remaining Budget:

 $z'_{k,t} = \mathbf{1} \{ b^{I}_{k,t} \ge z_{k,t} \} \max(z_{k,t}, x_{k,t} d^{I}_{k,t})$ Pacing Parameter: $\mu_{k,t+1} = P_{[0,\lambda_{k,t+1}]} (\mu_{k,t} - \epsilon(\rho_k - z_{k,t}))$ Remaining Budgets: $\overline{B}_{k,t+1} = \overline{B}_{k,t} - z_{k,t}$

- > The inner selection simulates the same opportunities as in IP, so as to provide fair selection rule.
- Guarantee profit gains for per-member in General Cases!

References:

Balseiro, S. R. and Gur, Y. Learning in repeated auctions with budgets: Regret minimization and equilibrium. Management Science, 2019

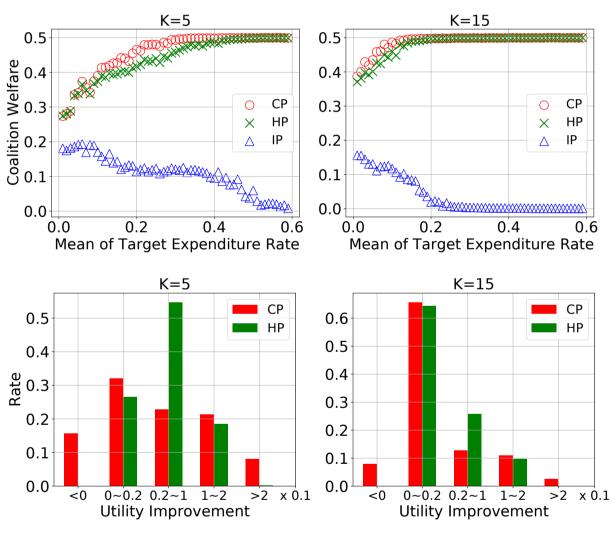
$$= v_{k,t}/\lambda_{k,t}$$
$$-\epsilon(\rho_k - z_{k,t})$$

Our Benchmark!

Pacing

Technique 2&3 – Algorithm Analysis 🝼

2. Strong monotonicity makes sure the bidders' utilities converges:


Comparison to benchmark

Comparison of per-person equilibria utilities

3. Per-person equilibrium utility comparison: Enable game-theoretic property analysis in symmetric

cases.

Experiments on Real Data

Dataset: https://contest.ipinyou.com/

- Values: normalized bids in dataset to be in [0,1].
- Highest bid outside coalition: $d_t^0 \sim \mathcal{N}(0.5, 0.2)$.
- Each point: $\bar{\rho} = 0.01 \alpha, \alpha \in [100]$. Sample each bidder's ρ_k from $\mathcal{N}(\bar{\rho}, 0.1)$.

For more details, scan to see the full paper ③

contact at: chenyurong@pku.edu.cn; charlie@pku.edu.cn; xiaotie@pku.edu.cn